

These findings extend our knowledge of the behavior of diradicals and of the phenomenon of radicalradical association to diradical dimers.³⁻¹⁰

Acknowledgment. The authors are grateful to Dr. P. C. Huang for the preparation of the pyridinium diiodides and to the National Institutes of Health, the National Science Foundation, the Army Research Office (Durham), and the Research Laboratories, Edgewood Arsenal (through Contract DA 18-035-AMC-138(A)), for support.

(7) K. H. Hausser and J. N. Murrell, J. Chem. Phys., 27, 500 (1957). (8) E. M. Kosower and J. L. Cotter, J. Am. Chem. Soc., 86, 5524 (1964).

 (9) N. Hirota and S. I. Weissman, *ibid.*, 86, 2538 (1964).
 (10) R. H. Boyd and W. D. Phillips, J. Chem. Phys., 43, 2927 (1965). (11) On leave from the Faculty of Pharmaceutical Sciences, The University of Tokyo, Hongo, Tokyo, Japan.

> Michiya Itoh,¹¹ Edward M. Kosower Department of Chemistry, State University of New York Stony Brook, New York 11790 Received May 8, 1967

Direct Observation of a Homoaromatic Bishomocyclopentadienide Anion¹

Sir:

Bicyclooctadiene II has been reported by Brown and Occolowitz² to be more reactive than monoene I in allylic proton-deuterium exchange by a factor of 104.5 in DMSO-KOBu-t at 50°. This increased reactivity of the diene was ascribed to the presence of the additional olefinic group in II, and the possible formulation of the intermediate anion as a bishomocyclopentadi-enide species III was suggested. The reported exchange involved only allylic protons, and no formation of isomeric tricyclic and tetracyclic hydrocarbons IV and V from the diene II was observed.

HMO calculations do in fact predict a bonding interaction between allylic anion and olefinic systems in a carbanion such as IIIa. Such interaction is predicted to be quite appreciable³ even for (β_{27}/β_0) equal to 0.3, and it is specifically allowed for by the 1,3-bishomocyclopentadienide⁴ description III. The charge

(1) (a) Research supported in part by the U.S. Army Research Office (Durham); (b) research supported in part by the National Science Foundation; (c) acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research.

(2) J. M. Brown and J. L. Occolowitz, Chem. Commun., 376 (1965). (3) Simple HMO calculations give values of $E_{\pi} - 6\alpha$ of $4.828\beta_{0}$ $5.032\beta_0$, $5.346\beta_0$, and $5.862\beta_0$ for β_{27}/β_0 values of 0, 0.3, 0.5, and 0.75, respectively. The corresponding negative charges at $C_{2,4}$: $C_{6,7}$: C_3 are 0.426:0.064:0.021, 0.346:0.126:0.056, and 0.263:0.177:0.120 for β_{27}/β_0 values of 0.3, 0.5, and 0.75, respectively

(4) (a) S. Winstein, J. Am. Chem. Soc., 81, 6524 (1959); S. Winstein

protonation at the different carbanionic centers of III, C_2 or C_4 to yield bicyclic diene II, C_6 or C_7 to yield tricyclic IV, and C_3 to give tetracyclic V. One may in fact anticipate the possibility of base-catalyzed equilibration of II, IV, and V, and such is indeed observed^{4c,5a} in Streitwieser's catalyst-solvent system,^{5b} CsNHC₆H₁₁ in C₆H₁₁NH₂, which gives much greater equilibration (and exchange) rates than does the KOBu*t*-DMSO system. We are now able to report the direct observation of anion III and its behavior in protonation since relatively stable solutions of anion III in tetrahydrofuran (THF) or 1,2-dimethoxyethane (DME) may be prepared by the classical ether cleavage method^{6a} using the reaction between Na-K alloy and exo-4methoxybicyclo[3.2.1]octadiene-2,6 (VII-OMe).7

distribution in such an ion depends, of course, on the

molecular geometry and the relative importance of the different atomic orbital overlaps.³ One may visualize

Ether VII-OMe was prepared by methylation of the corresponding *exo* alcohol⁷ VII-OH, mp 45-48°, *p*-nitrobenzoate⁷ mp 79-81°. Alcohol VII-OH was obtained along with its endo epimer,⁷ p-nitrobenzoate⁷ mp 72-72.5°, by various reductions of the corresponding ketone^{8a} VI; it was also obtained by saponification of the benzoate ester from t-butyl perbenzoate oxidation of diene II. The nmr spectrum of VII-OMe as well as that of diene^{8b} is summarized in Table I.

On shaking in THF or DME with Na-K alloy at ca. 0°, VII-OMe reacts quite rapidly to generate the bicyclooctadienide salt.^{6b,c} This reaction was carried out in an evacuated apparatus which permitted filtration to remove excess alloy and methoxide salt and collection and concentration of the carbanion solution in an nmr tube. The resulting orange carbanion solutions are only very faintly contaminated, e.g., with diene II, and are stable for many hours. One of the signals in the nmr spectrum of III is obscured by a solvent

and J. Sonnenberg, ibid., 83, 3244 (1961); (c) S. Winstein, Chemica¹ Society International Symposium on Aromaticity, Sheffield, England, July 6-8, 1966; Special Publication No. 21, The Chemical Society, London, 1967.

(5) (a) J. M. Nicholson, unpublished work; (b) A. Streitwieser, Jr., and J. I. Brauman, J. Am. Chem. Soc., 85, 2633 (1963). (6) (a) K. Ziegler and B. Schnell, Ann., 437, 227 (1924).

(b) Attempts to generate anion III by reaction of Na or Na-K alloy with diene II or tricyclic bromide⁴⁰ in THF were not very successful. (c) J. M. Brown (private communication) has also employed this method to generate III.

(7) New compounds gave satisfactory carbon and hydrogen analyses. Configurations assigned on the basis of the usual nmr and chemical criteria.

(8) (a) P. K. Freeman and D. G. Kuper, Chem. Ind. (London), 424 (1965); (b) W. R. Moore, W. R. Moser, and J. E. LaPrade, J. Org. Chem., 28, 2200 (1963).

Proton	II ^{b,e} in THF	Chemical s VII-OMe in DME	shifts,ª τ— III∕ in THF-d₃	III in DME
H1,5 H2 H4 H3 H6 H7 H88 Hai	$7.43 4.08 7.83^{\circ}8.21^{d}4.854.353.828.108.34$	$7.26 3.90 \sim 6.7 4.72 4.18 3.57 8.2$	7.55 7.16 7.16 4.61 6.33 6.33 9.13 9.58	7.51 7.18 7.18 4.65 9.16 9.58

^a Relative to τ 6.40 and 8.25 signals for THF or τ 6.58 and 6.75 signals for DME. ^b Based partly on 60- and 100-Mc spectra of neat II and II-2,4,4- d_3 . ^c exo. ^d endo. ^e $J_{2,3} = 10$ cps; $J_{8a,8b} =$ 9 cps; $J_{6,7} = 5.6$ cps; $J_{1,8a} = J_{5,8a} = 4$ cps; $J_{1,7} = 2.8$ cps; $J_{5,6} = 2.6$ cps; $J_{3,4}$ -exo, $J_{3,4}$ -endo, $J_{1,8b}$, $J_{5,8b}$ all <2 cps. $^{f}J_{8a,8b} = 8$ cps; $J_{2,3} = 6.7$ cps; $J_{1,2} = 5.3$ cps; $J_{1,8a} = 4$ cps; $J_{1,7}$, $J_{1,8b}$ both <2 cps.

signal in ordinary THF or DME, but this difficulty is largely avoided in THF- d_8 (Table I and Figure 1).

In the nmr spectrum of the anion III the signal for vinylic protons $H_{2,4}$ appears as a triplet at τ 7.16, shifted upfield by 3.1 ppm relative to H_2 in diene II. The signal for $H_{6,7}$ appears as a singlet at τ 6.33, upfield by an average of 2.3 ppm relative to H_6 and H_7 in II. On the other hand, the signal for H_3 appears as a triplet at τ 4.62, actually slightly downfield (ca. 0.2 ppm) from H₃ in II. For the bridgehead protons $H_{1.5}$ in the anion, the signal appears as a skewed triplet at τ 7.55, nearly the same position as in II (τ 7.43). The signals for the H₈ protons appear as a multiplet at τ 9.12 for H_{8a} and a doublet at τ 9.58 for H_{8b}, an average of 1.1 ppm upfield relative to the values for H_{8a,b} in II.

All the features of the nmr spectrum of the anion are very much in accord with a delocalized bishomocyclopentadienide structure III with an appreciable aromatic ring current. Very striking is the relatively large upfield shift of the $H_{6.7}$ signal on going from II to III, in contrast with the negligible effect on the bridgehead 1,5 protons. The upfield shift of the $H_{6,7}$ signal by an amount ca. two-thirds as large as that for $H_{2,4}$ indicates the substantial delocalization of negative charge to C₆ and C₇. The chemical shifts of the $H_{2,4}$, $H_{6,7}$, and H_3 protons relative to the values in II, namely 3.1, 2.3, and -0.2 ppm, respectively, are in just the C_{2,4} > $C_{6,7} > C_3$ order for the predicted³ charge distribution in anion III. The slight negative shift for H₃ relative to H_3 in II can be ascribed to the fact that the appreciable deshielding due to the aromatic ring current more than offsets the shielding effect of the negative charge at C_3 , the very atom expected³ to bear the least negative charge. The substantial shielding of the H₈ protons in III relative to II by 1.1 ppm may also be ascribed at least partly to a ring-current effect.9

Quenching of the carbanion III solutions in CH₃OH or CH₃OD produces essentially quantitatively the diene II containing <0.5% of tricyclic hydrocarbon IV or tetracyclic V. The identity of the diene from the CH₃OH quench was confirmed by vpc and by the nmr 3657

Figure 1. Nmr spectrum of bicyclooctadienide anion III in THF d_8 (Varian A-60 spectrometer).

spectrum of the recovered material. The data show that kinetic control in the protonation of III favors C_{2.4} very strongly.¹⁰ As regards possible stereospecificity of the protonation, the nmr spectrum of the diene II recovered from the CH₃OD quench shows the presence of both exo- and endo-4-D in comparable amounts. Thus, no appreciable stereospecificity is evident in protonation of III, as was also indicated by the behavior of diene II in the deuterium exchange study.^{5a}

We are now employing carbanion III in the synthesis of homocounterparts of cyclopentadienyl complexes.

(10) Appreciable amounts of tricyclic IV and tetracyclic V are detected in the products from Na-NH3(1) reduction of tricyclic or tetracyclic halides or from preparation and hydrolysis of the corresponding Grignard reagents. 40,5ª Thus, as we already surmised, 40 these latter conversions do not proceed entirely via carbanion III

(11) National Science Foundation Postdoctoral Fellow, 1965-1966.

S. Winstein, M. Ogliaruso, M. Sakai, J. M. Nicholson¹¹ Contribution No. 2107, Department of Chemistry, University of California, Los Angeles, California 90024 Received June 5, 1967

Alkyladamantanes by Rearrangement from **Diverse Starting Materials**

Sir:

When Nujol (refined petroleum oil) is heated with aluminum halide catalysts, a mixture of polysubstituted alkyladamantanes is formed in yields of up to 11%. A variety of other substances, including cholesterol, cholestane, abietic acid, cedrene, caryophyllene, camphene, cyclohexene, cyclohexanol, cyclohexane, squallene, squallane, and dodecane, also give similar alkyladamantane mixtures (Table I).

These reactions were most successfully carried out in pressure bottles agitated by a wrist-action shaker at 110-130° for 2-5-day periods. Various catalysts were effective. The best were AlBr₃^{1,2} and AlCl₃³ "sludge" catalysts which facilitated contact when used in excess. To a lesser degree, AlBr₃ and AlCl₃ also worked. Solvents were not needed, but CS₂ could be

⁽⁹⁾ E.g., S. Winstein, C. G. Kreiter, and J. I. Brauman, J. Am. Chem. Soc., 88, 2047 (1966).

^{(1) (}a) V. Z. Williams, Jr., A.B. Thesis, Princeton University, 1965; (b) V. Z. Williams, Jr., P. von R. Schleyer, G. J. Gleicher, and L. B. Rodewald, J. Am. Chem. Soc., 88, 3862 (1966).

⁽²⁾ A. Schneider, R. W. Warren, and E. J. Janoski, J. Org. Chem., 31. 1617 (1966)

⁽³⁾ Prepared from AlCl₃ and t-BuBr following Williams¹ by M. Nomura.